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Abstract

Background: Although evidence suggests relationships between some crude oil components 

and glycemic dysregulation, no studies have examined oil spill-related chemical exposures in 

relation to type 2 diabetes mellitus (DM) risk. This study examined the relationship between total 

hydrocarbon (THC) exposure among workers involved in the 2010 Deepwater Horizon (DWH) oil 

spill and risk of DM up to 6 years afterward.
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Methods: Participants comprised 2660 oil-spill cleanup or response workers in the prospective 

GuLF Study who completed a clinical exam and had no self-reported DM diagnosis prior to the 

spill. Maximum THC exposure was estimated with a job-exposure matrix based on interview 

data and personal measurements taken during cleanup operations. We defined incident DM by 

self-reported physician diagnosis of DM, antidiabetic medication use, or a measured hemoglobin 

A1c value ≥ 6.5 %. We used log binomial regression to estimate risk ratios (RRs) for DM 

across ordinal categories of THC exposure. The fully adjusted model controlled for age, sex, 

race/ethnicity, education, employment status, and health insurance status. We also stratified on 

clinical body mass index categories.

Results: We observed an exposure-response relationship between maximum daily ordinal 

THC exposure level and incident DM, especially among overweight participants. RRs among 

overweight participants were 0.99 (95% CI: 0.37, 2.69), 1.46 (95% CI: 0.54, 3.92), and 2.11 

(95% CI: 0.78, 5.74) for exposure categories 0.30-0.99 ppm, 1.00-2.99 ppm, and ≥ 3.00 ppm, 

respectively (ptrend=0.03).

Conclusion: We observed suggestively increasing DM risk with increasing THC exposure level 

among overweight participants, but not among normal weight or obese participants.
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Introduction/background

The 2010 Deepwater Horizon (DWH) oil spill is the largest recorded marine oil spill in 

the United States, releasing an estimated 205.8 million gallons of crude oil into the Gulf 

of Mexico over 87 days (1). Cleanup efforts included tens of thousands of workers (1). 

Workers experienced a variety of spill-related exposures as a function of the types, timing, 

and locations of their jobs/tasks, as weathering processes altered the geographic distribution 

and composition of the oil. Crude oil contains a range of volatile organic compounds 

that may contribute to an individual’s total hydrocarbon (THC) exposure. Among those 

volatile organic compounds, the best studied in relation to human glycemic dysregulation 

is benzene, which together with toluene, ethylbenzene, xylenes, and n-hexane comprise 

BTEX-H. The BTEX-H chemicals comprised approximately 18% by weight (approximately 

30% by volume) of the volatile chemicals in the original crude oil (2), though the relative 

proportions to which workers were exposed varied based on the degree of weathering of the 

oil to which a worker was exposed.

Among the BTEX-H chemicals, benzene is the most well studied in relation to glycemic 

regulation. Non-occupational studies of elderly adults and children found a relationship 

between increased benzene exposure and increased insulin resistance (3,4). In mice, 

inhaled benzene induces similar indications of glycemic dysregulation, with hypothalamic 

inflammation and endoplasmic reticulum stress (5), as well as oxidative stress (6). 

Additionally, ingestion of benzene by rats has been associated with increased fasting blood 

glucose, blood insulin increases, and insulin resistance, as well as increased levels of 

oxidative species, decreased antioxidant capacity, and evidence of DNA damage in β-cells 
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and liver cells. Little research has examined the other BTEX-H chemicals in relation to 

glycemic dysfunction, although one study found that inhaled toluene at repeated high doses 

was associated with persistent overall metabolic and glycemic dysfunction in rats fed a high 

fat diet (7).

Type 2 diabetes mellitus (DM) is characterized by a failure of glycemic homeostasis due 

to pancreatic β-cell dysfunction or somatic cell resistance to insulin. BTEX-H exposure 

may contribute to β-cell dysfunction via oxidative stress, which may overwhelm antioxidant 

mechanisms, given that exposure in human in vitro assays and rodent models leads to 

increased oxidative stress markers and oxidative DNA damage (8-18), which impairs β-cell 

function (19-23) and overall metabolic function (24-29).

This study examines the relationship between oil spill cleanup-related total hydrocarbon 

(THC) exposure and incident DM among individuals who worked on the 2010 Deepwater 
Horizon oil spill. To the best of our knowledge, this is the first study of oil spill chemical 

exposures and diabetes risk.

Methods

Study design and population

Participants in the present study were a subset of participants from the Gulf Long Term 

Follow-up Study, which is a prospective cohort of 32,608 individuals at least 21 years of age 

at enrollment who worked on the DWH spill cleanup and response or who completed oil 

spill cleanup safety training but did not participate in the cleanup (30).

Participants contributed data over multiple study phases, including; a) a structured telephone 

interview at enrollment (in English, Spanish, or Vietnamese) completed by all study 

participants (2011-2013) (n=32,608); b) a home visit involving an in-person interview and 

collection of biological samples, anthropometric measurements, and clinical measurements 

among cohort members residing in a state bordering the Gulf of Mexico (MS, AL, LA, 

FL, TX) (2011-2013) (n=11,193); c) a structured follow-up telephone interview targeting 

all English and Spanish speaking participants (2013-2016) (n=21,256); and d) a clinical 

exam involving an in-person interview and collection of anthropometric and hemoglobin 

A1c (HbA1c) measurements among a sample of cohort members restricted to those residing 

within 60 miles of study clinics in Mobile, AL or New Orleans, LA (2014-2016) (n=3,401).

This analysis focused on the 3,401 participants (62% of eligible participants) who completed 

the clinical exam. Of these, we excluded 528 who did not work on the spill to minimize 

potential bias from the healthy worker effect (31), 164 with a self-reported DM diagnosis 

prior to the spill (April 20th, 2010), 1 with probable type 1 DM (under 40 years old and 

prescribed insulin without other antidiabetic medication) (32), and 48 missing necessary 

covariate data, leaving 2,660 for these analyses (Table 1). Time from start of the spill to 

the clinical exam ranged across participants from 4 to 6 years. This study was approved 

by the institutional review board at the National Institute of Environmental Health Sciences 

(NIEHS) and all study participants provided informed consent.
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Total hydrocarbons ordinal exposure levels

Each worker’s exposure was defined as their maximum one-day THC exposure, as described 

below. The enrollment interviews administered to each participant included questions about 

activities performed, and locations and dates. GuLF Study industrial hygienists used this 

information together with THC measurements (analyzed as total petroleum hydrocarbons) 

from approximately 28,000 personal air samples collected from the general population of oil 

spill response and cleanup workers (for industrial hygiene purposes) to create a job-exposure 

matrix (33). Participants often performed multiple oil spill cleanup-related jobs/tasks in a 

single day and over their work period. Each person was assigned an exposure value for 

each job/task using the job-exposure matrix (33). The maximum daily value across all work 

days (33), which has been successfully used in other GuLF Study analyses and was the 

only quantitative chemical exposure measure available for these analyses, was used. Ordinal 

exposure levels were defined using a pseudo-log scale based on the empirical exposure 

distribution: <0.30 ppm, 0.30–0.99 ppm, 1.00–2.99 ppm, and ≥3.00 ppm (33). This analysis 

utilizes ordinal exposure categories, rather than continuous values, to reflect uncertainty in 

the exposure estimates derived from the job exposure matrix (33)

Diabetes assessment

Participants were treated as incident type 2 DM cases if they a) reported a post-spill 

physician diagnosis of DM at either the enrollment or first follow-up interviews, b) reported 

taking an antidiabetic medication at the time of the clinical exam, or c) had a HbA1c value 

at or above 6.5%, as measured by a DCA Vantage device (Siemens Medical Solutions USA, 

Inc.), during the clinical exam (34). Women reporting only gestational diabetes were not 

considered cases.

Participants who reported a physician diagnosis of DM were asked for either age or date of 

diagnosis; age at diagnosis was used to estimate date of diagnosis by calculating the middle 

month of their age-year of diagnosis. Date of diagnosis was used to identify incident cases 

of DM in relation to the start of the spill (April 20th, 2010), based on each participant’s 

earliest reported date of diagnosis.

Potential confounders

Potential confounders were selected based on a directed acyclic graph (DAG) (35). Data 

from the enrollment interviews included sex (female, male); race/ethnicity (Non-Hispanic 

White, Black/African American Hispanic and non-Hispanic, Other); highest educational 

attainment (less than high school, high school diploma/GED/some college, college degree); 

and employment status (working or student, looking for employment/keeping house, other). 

Smoking status was categorized as current, former, and never. Race/ethnicity data are 

values of racial self-classification - participants selected from a list including American 

Indian/Alaskan Native, Asian, Black/African American, Native Hawaiian/Pacific Islander, 

and White. Ethnicity was similarly ascertained and included Hispanic/Latino identity. Race 

and ethnicity were collapsed further because of small cell numbers. Information on health 

insurance status (insured, uninsured) was collected at the home visit. Age at the clinical 

exam was represented as restricted quadratic splines with knots at 35, 50, 67, and 77 years 

after assessing the functional form of age with the Akaike Information Criterion.
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Body mass index (BMI) was not included as a confounder in the main analysis because 

weight and height data were collected after the exposure occurred and BMI could be a 

mediator of any THC-DM relationship, but it was considered in sub-analyses. BMI was 

categorized as underweight/normal weight, overweight, and obese (< 25 kg/m2, 25-25.9 

kg/m2, ≥ 30 kg/m2, respectively) using measurements from the home visit. Height and 

weight were each measured three times and the average of each was used to calculate the 

home visit BMI (36).

Statistical analysis

We used log binomial regression to estimate risk ratios (RR) and corresponding 95% 

confidence intervals (95 % CIs) for DM through the date of the clinical exam by ordinal 

THC exposure level. In the main analysis, three adjustment models were used: 1) reduced 

model: age only; 2) basic model: age, sex, race/ethnicity, and education; 3) full model: 

age, sex, race/ethnicity, education, employment status, and health insurance status. For each 

model, we performed a trend test with the median value for each exposure category as a 

continuous measure; the corresponding p-value is the Wald statistic for that parameter. In all 

analyses the lowest exposure category, < 0.30 ppm, was the reference group. All tests for 

significance were assessed at an alpha level of 0.05. All analyses were conducted with SAS 

version 9.4 (SAS, Cary, NC).

The reduced, basic, and full models were applied to a) the entire analytic sample (n = 

2660) and b) male workers only (n = 2051). The male-only analyses were conducted for 

two reasons. First, there may be sex-specific differences in biological response to THC 

components, as indicated by studies on humans (4) and mice (5), but there were too few 

women for separate analyses. Second, some women could have been prescribed metformin 

(a popular antidiabetic medication) for polycystic ovary syndrome rather than for diabetes 

(37). Although rare, polycystic ovary syndrome seems to have a higher prevalence in the 

southern US compared to other regions of the US (38).

Because BMI is a potential mediator, we separately examined associations adjusted for BMI 

by including it in the log binomial models, using the COPY method as needed to enable 

convergence (39,40). We also stratified by BMI, using the same three adjustment sets as in 

the main analysis. We additionally investigated multiplicative interaction between BMI and 

THC exposure levels in relation to diabetes risk, assessing effect measure modification with 

a likelihood ratio test (LRT) using fully adjusted log binomial models and the COPY method 

as needed.

Sensitivity analyses

We repeated the main analysis defining incident cases using each individual’s last date of 

spill-related employment rather than the start of the spill (April 20th, 2010) to assess the 

impact of including cases (n = 2644) diagnosed during the cleanup, which may be biased 

due to some cleanup workers’ changes in access to medical care during this period. We also 

performed sub-analyses a) including prediabetes (defined as 5.7% ≤ HbA1c < 6.5%) among 

the cases (34) and, separately, b) with cases restricted to individuals either with HbA1c ≥ 

6.5% or reporting both DM diagnosis and use of antidiabetic medication. Because smoking 
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is a risk factor for DM but was not strongly related to spill-related THC exposure (Spearman 

rho = −0.099), we conducted an additional sensitivity analysis in which we included it in the 

fully adjusted model.

Results

Compared to non-cases, cases were older, more likely to be male, more likely to self-identify 

as Black, less likely to have graduated from high school, more likely to be no longer 

working because of retirement or disability, more likely to have health insurance, and far 

more likely to be obese (Table 1). Among those who were eligible for the clinical exam, 

the proportion that participated in the clinical exam was similar between those reporting and 

not reporting a diabetes diagnosis at the follow-up interview (data not shown), suggesting 

little/no selection bias related to this factor.

All models utilizing the full sample showed an apparent exposure-response relationship of 

increasing DM incidence with increasing THC exposure level, although individual point 

estimates were not statistically significant. RRs from the full model were 1.07 (95% CI: 

0.71, 1.62), 1.23 (95% CI: 0.82, 1.86), and 1.28 (95% CI: 0.83, 1.97), for exposure 

categories 0.30-0.99 ppm, 1.00-2.99 ppm, and ≥ 3.00 ppm, respectively, compared to 

exposures below 0.30 ppm (Table 2). Exposure-response relationships were somewhat 

stronger in models restricted to males. In these analyses, RRs for the full model were 1.27 

(95% CI: 0.72, 2.24), 1.54 (95% CI: 0.89, 2.65), and 1.61 (95% CI: 0.92, 2.82), for exposure 

categories 0.30-0.99 ppm, 1.00-2.99 ppm, and ≥ 3.00 ppm, respectively (Table 2).

In models stratified by BMI category, we observed an exposure-response relationship among 

overweight participants (ptrend= 0.03), although the point estimates were not statistically 

significant; the estimated basic adjustment RRs were 0.99 (95% CI: 0.37, 2.69), 1.46 (95% 

CI: 0.54, 3.92), and 2.11 (95% CI: 0.78, 5.74) for exposure categories 0.30-0.99 ppm, 

1.00-2.99 ppm, and ≥ 3.00 ppm, respectively (Table 3). The point estimates within the obese 

category were all elevated, but with no apparent trend. Results from the underweight stratum 

were very unstable because of the small number of cases (n = 21) and are therefore not 

presented.

When incident cases were defined using the end, rather than the start, of each individual’s 

work on the spill, there was virtually no change in the pattern of increasing DM incidence 

with increasing THC exposure level (Supplementary Table S1). In analyses including both 

those with diabetes and prediabetes detected at clinical exam as cases, all RR estimates were 

attenuated and close to the null value of 1.00. Models using a stricter case definition based 

on either a) HbA1c ≥6.5% or b) both a DM diagnosis and use of antidiabetic medication also 

produced attenuated RR estimates. RR estimates were similar when models included BMI as 

a covariate, with RRs for the full model of 1.22 (95% CI: 0.80, 1.84), 1.25 (95% CI: 0.83, 

1.89), and 1.27 (95% CI: 0.82, 1.96) for exposure categories 0.30-0.99 ppm, 1.00-2.99 ppm, 

and ≥ 3.00 ppm, respectively. In models including a multiplicative interaction between BMI 

and the exposure in the fully adjusted model, we observed no evidence of multiplicative 

interaction (p = 0.60). Estimates from the full model that included smoking status were 

nearly indistinguishable from those of the main analysis (Supplementary Table S2).
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Discussion

This analysis showed an apparent exposure-response relationship of increasing DM 

incidence with increasing maximum THC exposure level, which appeared stronger among 

males, although the individual point estimates were not significant. Additionally, there was 

a significant exposure-response relationship among overweight participants, but not among 

obese participants.

Because this is the first study of DM risk in relation to oil spill response and cleanup-related 

exposures, there are no studies available for direct comparison. Our results are, however, 

consistent with previous non-occupational studies, including those among adults ≥ 60 years 

of age and among children 6-18 years of age, which found that higher blood levels of 

benzene metabolites were associated with greater insulin resistance (3,4). There may be 

sex-specific responses to benzene exposure; Choi et al. (4) showed suggestive differences 

in benzene metabolite-insulin resistance dose-response in humans and DeBarba et al. (5) 

found that among mice exposed to chronic low levels of gaseous benzene, only male mice 

exhibited impaired glucose tolerance and increased blood insulin levels. Though this is an 

important aspect of glycemic responses to volatile organic compounds, our study had too 

few women to adequately investigate this further.

Our main analysis results also corroborate in vitro and rodent studies that show metabolic 

dysfunction with exposure to benzene (5,6,41,42) and toluene (7). The inhalable exposures 

in the present study, including benzene, are several orders of magnitude lower (low ppb 

vs 50 ppm) than the inhaled exposures used in a mouse study that showed oxidative 

stress and metabolic dysfunction related to benzene exposure in a dose-dependent fashion 

(6). Our results suggest that much lower benzene exposures may follow similar patterns, 

though we lacked the necessary chemical-specific data to characterize the respective 

contributions of each agent to higher observed risks. The rodent studies referenced above 

did not assess delayed or persistent changes, whereas this study had several years between 

exposure and the outcome assessment, allowing for changes that were either delayed or 

undiagnosed, immediate, and persistent (6,41,42). We are unaware of any human studies 

examining the relationships of toluene, ethylbenzene, xylenes, or n-hexane exposures with 

glycemic dysregulation, but limited rodent studies of ethylbenzene and xylene have found no 

structural changes to the pancreas nor changes in urinary glucose levels (43,44).

We observed a significant exposure-response relationship only among overweight 

participants. It is possible that the higher baseline risk of developing DM among obese 

individuals (44) may have obscured a trend of increasing risk associated with increasing 

THC exposure level; there was still an apparent small increase in risk for obese workers 

with any THC exposure level above the reference level. We observed expected associations 

between BMI and DM incidence, with 71.3% of diabetics classified as obese versus 40.8% 

of non-diabetics. The attenuation of RRs when those with pre-diabetes were included as 

cases suggests that 1) oil spill cleanup-related THC exposure, if causally related to DM, 

may act in the later stages of disease progression or primarily among susceptible individuals 

and 2) any potential overreporting of diabetes diagnoses by pre-diabetics was insufficient 

to obscure an association. It is also possible those with prediabetes could have been pre-
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diabetic prior to the spill but were not excluded as prevalent cases. At the same time, 

attenuation of the risk estimates when using a stricter definition of DM (i.e., HbA1c ≥ 

6.5% or (DM diagnosis and use of antidiabetic medication)) could be due to one or more 

of the following: a) some physician-diagnosed diabetic participants were managing their 

diabetes without antidiabetic medication, b) some participants misreported being diagnosed 

with DM, and/or c) some pre-diabetic participants were taking antidiabetic medication. It is 

unlikely that any overreporting of DM was differential by exposure status as exposure was 

estimated by study investigators based on participants’ detailed spill-related work histories. 

We lacked the data necessary to evaluate this issue further, although our data indicate that 

a small proportion (up to 12%) of cases may have incorrectly reported a DM diagnosis, as 

they had neither antidiabetic medication nor a HbA1c value ≥ 6.5%.

Strengths of this analysis of oil spill workers include its use of THC exposure estimates, 

based on measurements, as opposed to using job title as a proxy for exposure, the ability to 

identify undiagnosed DM cases via measured HbA1c, a relatively large sample size, and the 

ability to control for important demographic, lifestyle, and anthropometric factors, including 

measured BMI. In addition, it examined incident/newly identified diabetes cases rather than 

diabetes mortality, allowing us to account for well-managed diabetes among the still living 

and avoiding the documented under-ascertainment, possibly differential, resulting from use 

of cause of death data from vital records (45-48). It is also the first study of the association 

between oil spill response and cleanup-related exposures and risk of DM.

Limitations of this study include possible outcome misclassification because case 

ascertainment relied partially on self-reported physician diagnosis of DM; however, self-

reported DM has positive predictive values of 72%-94.9% in long term cohort studies with 

multiple follow-up phases (49-51), and we were able to detect unreported/undiagnosed DM 

cases with measured HbA1c levels. Because we had HbA1c level measured only at the 

clinical exam, we were unable to exclude any individuals with prevalent, but undiagnosed, 

DM prior to the start of follow-up; this is expected to bias our estimates toward the null. 

Additionally, because covariate data were missing for less than 2% of study participants, 

our complete case analysis is unlikely to have substantially affected results. The follow-up 

period was not the same for every individual, as the phases of the study were completed 

over multiple years, though this difference in follow-up time is unlikely to bias this analysis 

because it is unlikely to be associated with exposure and because DM may develop or 

progress to diagnosis very slowly. Additionally, the maximum THC exposure metric does 

not take into account how frequently this maximum occurred, nor does it account for 

cumulative exposure over time.

These results suggest an association between oil spill response and cleanup-related THC 

exposure and increased risk of DM. Future studies on this topic would benefit from 

incorporating information about individual agents within oil spill cleanup-related THC, 

allowing analysis of the joint effects of individual agents.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Prior studies have not examined the relationship between risk of type 2 

diabetes and oil spill cleanup-related exposures.

• This study used data from the Gulf Long Term Follow-up Study, which is a 

prospective cohort of individuals who completed training required to work on 

the Deepwater Horizon spill cleanup and response.

• This study found a trend of increasing risk of diabetes with increasing total 

hydrocarbons exposure level among workers up to 6 years after exposure, 

with a significant trend among overweight workers.

• Our findings are consistent with related literature concerning exposure to 

components of crude oil and glycemic dysregulation.
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Table 1:

Study population (n = 2709) characteristics at enrollment, except where indicated (overall and by diabetes 

status)

All participants
(n = 2709)

Diabetics
(n = 245)

Non diabetics
(n = 2464) p-value

g

N % N % N %

THC exposure level (ppm)
a 0.77

  < 0.30 364 13.4 % 31 12.7 % 333 13.5 %

  0.30 – 1.99 850 31.4 % 73 29.8 % 777 31.5 %

  2.00 – 2.99 821 30.3 % 78 31.8 % 743 30.2 %

  ≥ 3.00 674 24.9 % 63 25.7 % 611 24.8 %

  Missing -- -- --

Age at clinical exam (y) <0.01

  < 35 596 22.0 % 19 7.8 % 577 23.4 %

  35 – 44 582 21.5 % 40 16.3 % 542 22.0 %

  45 – 54 754 27.8 % 78 31.8 % 676 27.4 %

  55 – 64 544 20.1 % 74 30.2 % 470 19.1 %

  ≥ 65 233 8.6 % 34 13.9 % 199 8.1 %

  Missing -- -- --

Sex 0.26

  Female 618 22.8 % 48 19.6 % 570 23.1 %

  Male 2091 77.2 % 197 80.4 % 1894 76.9 %

  Missing -- -- --

Race & Hispanic ethnicity
b 0.44

  Non-Hispanic White 1353 50.1 % 115 46.9 % 1238 50.4 %

  Black 1122 41.5 % 168 45.7 % 1010 41.1%

  Other 226 8.4 % 34 7.4 % 208 8.5 %

  Missing 8 -- 8

Education 0.62

  No high school (HS) diploma 577 21.3 % 59 24.1 % 518 21.0 %

  HS diploma/Some college (no degree) 1488 55.0 % 133 54.3 % 1355 55.0 %

  College degree 643 23.7 % 53 21.6 % 590 24.0 %

  Missing 1 1 --

Employment status
c <0.01

  Working or student 1552 57.4 134 54.7 % 1418 57.7 %

  Unemployed 786 29.1 53 21.6 % 733 29.8 %

  Other 366 13.5 58 23.7 % 308 12.5 %

  Missing 5 0 5

Health insurance status
d <0.01

  Yes 1301 48.6 % 140 58.1 % 1161 47.7 %

  No 1374 51.4 % 101 41.9 % 1273 52.3 %
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All participants
(n = 2709)

Diabetics
(n = 245)

Non diabetics
(n = 2464) p-value

g

N % N % N %

  Missing 34 4 30

BMI category (kg/m2)
e <0.01

  Under/normal weight (< 25) 652 24.4 % 21 8.8 % 631 25.9 %

  Overweight (25 - 29) 861 32.2 % 48 20.0 % 813 33.4 %

  Obese (≥ 30) 1165 43.5 % 171 71.3 % 994 40.8 %

  Missing 31 5 26

Smoking status
f <0.01

  Current 1083 40.0 % 72 29.4 % 1011 41.1 %

  Former 717 26.4 % 98 40.0 % 619 25.1 %

  Never 906 33.5 % 75 30.6 % 831 33.7 %

  Missing 3 0 3

All data were from the Gulf Long Term Follow-up Study of individuals who worked for at least one day on the Deepwater Horizon oil spill cleanup 
and who completed a routine clinical exam as part of that study 4-6 years after the spill.

a
Maximum daily total hydrocarbon exposure experienced during work on the spill. Estimated via detailed self-report of spill-related tasks together 

with a job-exposure matrix based on extensive air monitoring during the spill cleanup (see Stewart et al. (2018))

b
Non-Hispanic White, Black (Hispanic and non-Hispanic), Other (Hispanic and non-Hispanic)

c
Working/student/on temporary sick leave; unemployed/keeping house; Other/retired/disabled

d
Health insurance status at the time of the home visit.

e
BMI at the time of the home visit. Calculated from the average height and average weight from three measurements each.

f
smoking status at the time of the clinical exam

g
P-values for Chi-squared tests for difference, which are crude and do not provide evidence of confounding or of a causal relationship
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